Is Network Security Monitoring Dead in the Age of Encryption?

By Dallin Warne

Follow the presentation on your device: https://bit.ly/2MEPiyo

About the Presenter

- Network operations center analyst (higher ed)
- Network Engineer (higher ed)
- Network security contractor (healthcare)
- Security engineer for multiple universities (higher ed) (present)

About the Audience

Encryption Landscape

- Encryption is prevalent, expected, and scrutinized
- Encryption costs are falling
 - ► Financial
 - ► Technical
 - ▶ Plenty of computing power
 - ▶ Becoming easier to implement

Percentage of pages loaded over Chrome by country

Is Network Security Monitoring Dead?

Is Network Security Monitoring Dead?

Encryption Effects

- Encryption reduces but does not eliminate network visibility
- Encryption changes an organization's approach to network security monitoring

Reasons NSM Lives On

- Reason #1: Not everything is encrypted
- Reason #2: Network itself needs protecting
- Reason #3: Inventory and profiling
- Reason #4: NSM is device and application agnostic
- ▶ Reason #5: Auditing and forensics

Reason #1: Not everything is encrypted

- ...Or will be in the near future
- And what's unencrypted still has security value

Why?: Shadow, & Legacy, non-standard IT

Older protocols, older mindsets.

Poor IoT Security.

Expensive enterprise applications and hardware are hard to decommission.

Photo credit: SimonWaldherr

Why? (Cont): Encryption Barriers to Entry

- Still often hard to implement correctly
 - ► SMB, SNMP, syslog, internal apps/devices
- Low return on investment
 - Backend services (e.g. database connections)
- Performance hits
 - ► Tor
- Security not prioritized

State of Network Encryption

- ▶ 92% US web traffic is encrypted —Google
- > 8% HTTP traffic is still a *lot* when looking at shear volume of web traffic
- Is web traffic all we care about?
 - ► Telnet, SNMP, SMB, DNS, SQL, FTP, DHCP, syslog, SMTP, TLS handshake...
 - ►TCP/UDP/ICMP headers, MAC addresses

Protocols by Bytes

Protocols by Bytes & Session Count

Protocol by Bytes

Protocol by Session Count

DNS

- Statistics & performance monitoring
- Detect machines bypassing approved DNS
- ldentify new, malicious, or phishing domains
- Dynamically generated algorithm (DGA) domains
- Sinkhole bad domains
- DNS tunneling

DNS Sinkhole

Sinkhole Example

Sinkhole Act	4h 🚦			
id.orig_h	арр	category	misc	_count
<u>10.</u>	ssl	<u>malware</u>	programdiag.com/	525
<u>10.</u>	ssl	<u>malware</u>	<u>yahooron.com/</u>	6
<u>10.</u>	<u>ssl</u>	<u>malware</u>	<u>yahooron.com/</u>	3

DNS Detection Tunneling Example

entropy	query
4.9391831	jjÅ«Ó□□±.□Ø□q{□Ï[□þq□aúa ±ddÈ□□³´mh□
4.9391831	jjÅ«Ó□□±.□Ø□q{□Ï[□þq□aúa ±ddÈ□□³´mh□
4.73592635	ÊìÉÁ>□- ê□¹ãþÚÄÔiq½Ïdi.Èk□ú:
4.73592635	ÊìÉÁ>□- ê□¹ãþÚÄÔiq½ïdi.Èk□ú:
5.05881389	□~Ôé□ïä□:ávób □Ëô/clh7«□'□Ã□¦cf"w□μ²
5.05881389	□~Ôé□ïä□:ávób □Ëô/clh7«□'□Ã□¦cf"w□μ²
5.36981188	□□□áì§ìð#°*Ïn̲oqh;Ý£□§r□□ns□□yl7□ □¶o□y«?s□ fví□
5.36981188	□□□áì§ìð#°*Ïn̲oqh;Ý£□§r□□ns□□yl7□ □¶o□y«?s□ fví□
4.54659356	g□ ¾Ñ¼□□´ï\$□å□×µÇx²â¦□¤ b
4.8125	Ä□ñpÊj-ú¸□\$;□x2v□_\ĺbÀËaî 4□ □ae

Tool Analysis

Palo Alto Networks Firewall

- Anti-spyware DNS sinkholing
- DNS security (DGA, tunneling)
- ► IPS vulnerability protections

Zeek (formerly Bro)

- ► DNS.log
- DNS metrics and analytics
- DGA detection
- ▶ Tunneling detection

Honorable Mention: Pi-Hole

DNS-Over-HTTPS (DoH)

- Some controversy
- Can still maintain DNS visibility
- Attend "DNS and TLS Privacy and Security -Content Security Today and Tomorrow" session on Friday for more in-depth discussion

SSL/TLS

- Often clients try HTTP first
- Metadata analysis
- Server Name Indicator (SNI)
 - ▶ TLS 1.3 can encrypt SNI
 - ▶ Watch the adoption rate
 - ▶ Force downgrade
 - ▶ Block in DNS

- Certificate information
 - ► Common Name
 - Subject Alternative Names (SAN) from certificate
- ► JA3 hashes
- Encrypted Traffic Analytics

Palo Alto Botnet Example

	Source	
Confidence	address	Description
		Repeatedly visited (169) the same malicious
4	10.0.0.20	URL webarteronline.com/
		Repeatedly visited (48) the same malicious
4	192.168.1.5	URL dprince.org/
		Repeatedly visited (94) the same malicious
4	192.168.0.9	URL connect360bd.com

Zeek SSL Log Example

cert_chain_fuids[0]	FrwPxxxxxxxxxxx
cert_chain_fuids[1]	F8HРууууууууу
cipher	TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305 _SHA256
established	true
id.orig_h	192.168.1.5
id.orig_p	32450
id.resp_h	216.58.193.194
id.resp_p	443
issuer	CN=GTS CA 101,O=Google Trust Services,C=US
ja3	ebf5e0e525258d7a8dcb54aa1564ecbd
ja3s next_protocol	cd5a8d2e276eabf0839bf1a25acc479e h2
resumed	false
server_name	connectivitycheck.gstatic.com
subject	CN=*.google.com,O=Google LLC,L=Mountain V iew,ST=California,C=US
validation_status	ok
version	TLSv12

Tool Analysis

Palo Alto

- Vulnerability protection
 - e.g. Heartbleed
- ► URL log w/ site category
- Correlated events
- Botnet report

Zeek

- SSL.log, X509.log
 - Server names
 - ►JA3
- ► Certificate information

Value from Encrypted Sessions

- MAC Address
 - Vendor & Device profiling
- VLAN
- ► IP addresses
 - ► Threat intelligence
 - ► Geolocation

- Ports
 - ▶ Port scanners
- Protocols
- Bytes sent/received
- ▶ Time-based patterns
- ▶ IP-based patterns
- Metadata

Tool Analysis

Palo Alto

- Traffic log
- Resource & DoS protection
- Reconnaissance protection

Zeek

- Conn.log
- Weird.log
- Intel.log
- Protocol Anomaly log (DPD.log)
- Ssh.log

Reasons NSM Lives On

- Reason #1: Not everything is encrypted
- Reason #2: Network itself needs protecting
- Reason #3: Inventory and profiling
- Reason #4: NSM is device and application agnostic
- Reason #5: Auditing and forensics

Reason #2: Network Itself Need Protecting

- Lower-layer protections
- Firewalling & proper network segmentation
- ▶ DoS & resource protection
- ▶ User/Device Authentication
- Don't end up on blacklists

Reason #3: Inventory and Profiling

- Cybersecurity Frameworks first step is inventory
 - External attack surface inventoried already by OSINT services and attackers
 - ▶ Perform reconnaissance on yourself
- You can't adequately protect what you don't know
- Frameworks have network recommendations

Reason #4: Device & Application Agn

- Network protections are the same
 - ▶ It doesn't matter if the login form is on your SSO page or a webcam login
- Normalize events
 - Minimal configuration in logging system
- Perhaps the closest you can get to protecting assets you don't have visibility into
 - Shadow IT, decentralized IT, IoT, guests, network reputation

Reason #5: Auditing and Forensi

Auditing:

- Find misconfigurations or poor performance
- Confirm you don't have SMB open to the internet
- ▶ Find all web servers serving content over HTTP instead of HTTPS

Forensics

- You will want any data to help paint a picture of what happened
- Once a machine is popped, the trust in any endpoint reporting and logs drops significantly

Modern NSM Strategies

- Proper segmentation
 - ▶ Not just VLANs and ACLs, but firewalls, IPS, IDS
- East-west traffic monitoring
 - ▶ Idea of a trusted networks will persist
- ► Tap/span behind SSL termination
- Decrypt & inspect traffic

Strategy: Centralize & Consolidate

Photo Credit: Tony Webster on Flickr

Decryption

- Really need app-level data for full security visibility
- Decryption options often limited to SSL/TLS
- Certificates managed by operating system
 - Phone apps and web browsers also managing certificates

Decryption (Continued)

- Not trivial
 - ▶ Trial and error
 - ► Figure out certificate management for full coverage
 - ► Re-exposing sensitive data
- Forward to other NSM tools
- Don't expect 100% decryption

Trends

- ► Risk offload
 - ▶ Isolate uncontrolled or unmanaged assets
 - ► SaaS or 3rd party management

Trends

- Integrating security data
 - ► SIEM or logging solutions
 - Vendors offering network, endpoint, cloud, application tools integrated together
 - ▶ Big data security analytics—Cortex XDR, Chronicle Backstory, user-behavior analytics, etc.
- Move from high confidence investigations to highly suspicious/abnormal approach

NSM: One Puzzle Piece

- NSM is just one piece of a well-rounded security program
- Consider a holistic security program

The End is just The Beginning

@forewarnedyou

https://dallinwarne.com

https://linkedin.com/in/dallinwarne/